Developmental Control of Nuclear Size and Shape by kugelkern and kurzkern

نویسندگان

  • Annely Brandt
  • Fani Papagiannouli
  • Nicole Wagner
  • Michaela Wilsch-Bräuninger
  • Martina Braun
  • Eileen E. Furlong
  • Silke Loserth
  • Christian Wenzl
  • Fanny Pilot
  • Nina Vogt
  • Thomas Lecuit
  • Georg Krohne
  • Jörg Großhans
چکیده

BACKGROUND The shape of a nucleus depends on the nuclear lamina, which is tightly associated with the inner nuclear membrane and on the interaction with the cytoskeleton. However, the mechanism connecting the differentiation state of a cell to the shape changes of its nucleus are not well understood. We investigated this question in early Drosophila embryos, where the nuclear shape changes from spherical to ellipsoidal together with a 2.5-fold increase in nuclear length during cellularization. RESULTS We identified two genes, kugelkern and kurzkern, required for nuclear elongation. In kugelkern- and kurzkern-depleted embryos, the nuclei reach only half the length of the wild-type nuclei at the end of cellularization. The reduced nuclear size affects chromocenter formation as marked by Heterochromatin protein 1 and expression of a specific set of genes, including early zygotic genes. kugelkern contains a putative coiled-coil domain in the N-terminal half of the protein, a nuclear localization signal (NLS), and a C-terminal CxxM-motif. The carboxyterminal CxxM motif is required for the targeting of Kugelkern to the inner nuclear membrane, where it colocalizes with lamins. Depending on the farnesylation motif, expression of kugelkern in Drosophila embryos or Xenopus cells induces overproliferation of nuclear membrane. CONCLUSIONS Kugelkern is so far the first nuclear protein, except for lamins, that contains a farnesylation site. Our findings suggest that Kugelkern is a rate-determining factor for nuclear size increase. We propose that association of farnesylated Kugelkern with the inner nuclear membrane induces expansion of nuclear surface area, allowing nuclear growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Farnesylated Nuclear Proteins Kugelkern and Lamin Dm0 Affect Nuclear Morphology by Directly Interacting with the Nuclear Membrane

Nuclear shape changes are observed during a variety of developmental processes, pathological conditions, and ageing. The mechanisms underlying nuclear shape changes in the above-mentioned situations have mostly remained unclear. To address the molecular mechanism behind nuclear shape changes, we analyzed how the farnesylated nuclear envelope proteins Kugelkern and lamin Dm0 affect the structure...

متن کامل

The farnesylated nuclear proteins KUGELKERN and LAMIN B promote aging-like phenotypes in Drosophila flies.

The nuclear lamina consists of a meshwork of lamins and lamina-associated proteins, which provide mechanical support, control size and shape of the nucleus, and mediate the attachment of chromatin to the nuclear envelope. Abnormal nuclear shapes are observed in aging cells of humans and nematode worms. The expression of laminDelta50, a constitutively active lamin A splicing variant in Hutchinso...

متن کامل

Nuclear Morphology: When Round Kernels Do the Charleston

New studies in Drosophila have identified a novel nuclear envelope protein with a farnesyl moiety, termed Kugelkern/Charleston, that helps regulate the size, shape and position of cellular blastoderm nuclei.

متن کامل

Expression of lamina proteins Lamin and Kugelkern suppresses stem cell proliferation.

The nuclear lamina is involved in numerous cellular functions, such as gene expression, nuclear organization, nuclear stability, and cell proliferation. The mechanism underlying the involvement of lamina is often not clear, especially in physiological or developmental contexts. Here we investigate the role and activity of farnesylated lamina proteins Lamin (Lam) and Kugelkern (Kuk) in prolifera...

متن کامل

The role of farnesylated nuclear membrane proteins

*Correspondence to: Jörg Großhans; Email: [email protected] Changes in nuclear morphology are observed in diverse developmental processes as well as in pathological conditions. Modification of nuclear membrane and nuclear lamina protein levels results in altered nuclear shapes, as it has been demonstrated in experimental systems ranging from yeast to human cells. The imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2006